Symmetric forward-backward correlations as seen at RHIC

Adam Bzdak RIKEN BNL

STAR Coll., PRL 103, 172301 (2009)

T. Lappi, L. McLerran, Nucl. Phys. A832, 330 (2010)

AB, arXiv:1108.0882 [hep-ph]

Outline

- introduction definition short history
- STAR data

 impact parameter fluctuations
 measurement
 comparison with models
- puzzle and symmetric correlations
- conclusions

Introduction

Inelastic proton-proton collision

B = backward, F = forward, η = (pseudo)rapidity

Forward-backward multiplicity correlations

correlation: $\langle n_B n_F \rangle - \langle n_B \rangle \langle n_F \rangle$

B = backward, F = forward, η = (pseudo)rapidity

Correlation coefficient

$$b = \frac{\langle n_B n_F \rangle - \langle n_B \rangle^2}{\langle n_B^2 \rangle - \langle n_B \rangle^2}$$

b = 1, maximum correlation

b = 0, no correlation

b = -1, maximum anticorrelation

Energy dependence of b in pp

Average $\langle n_B \rangle$ in B at a given n_F in F $\langle n_B \rangle = a + b n_F$ [the same b as before]

STAR data

STAR Coll., PRL 103, 172301 (2009)

AuAu collisions at 200 GeV. STAR configuration with maximum distance between B and F

ip = impact parameter (problem)R = reference window (to determine centrality and more)

Why we want to measure b in AA collisions?

- it is recognized that correlations between particles with large separation in rapidity are born immediately after the collision
- we hope to see some fundamental difference between pp and AA

It is smart to reduce ip fluctuations

$$b_{BF}(n_R) = \frac{\langle n_B n_F \rangle_{n_R} - \langle n_B \rangle_{n_R}^2}{\langle n_B^2 \rangle_{n_R} - \langle n_B \rangle_{n_R}^2}$$

roughly speaking, STAR measures b at a given number of particles n_R in R ...

... and more precisely

$$b_{BF}^{\star} = \frac{\sum_{n_R} P(n_R) \left[\langle n_B n_F \rangle_{n_R} - \langle n_B \rangle_{n_R}^2 \right]}{\sum_{n_R} P(n_R) \left[\langle n_B^2 \rangle_{n_R} - \langle n_B \rangle_{n_R}^2 \right]}$$

where $P(n_R)$ is multiplicity distribution in R \star = STAR method of measuring b

results for b_{BF}^{\star} , Au+Au, 200 GeV

and results for b_{BF}^{\star} , p+p, 200 GeV

Comparison with models

Observations

- correlation coefficient increases with centrality
- it remains approximately constant across the measured region $|\eta| < 1$
- big difference between pp and AuAu
- fluctuations in impact parameter cannot explain the data*

^{*} T. Lappi, L. McLerran, Nucl. Phys. A832 (2010) 330

Puzzle and symmetric correlation

T. Lappi, L. McLerran, Nucl. Phys. A832 (2010) 330

AB, arXiv:1108.0882 [hep-ph]

As noticed by T.Lappi and L.McLerran it is very strange that $b_{BF}^{\star} > \frac{1}{2}$ (we are interested in configuration with maximum $\Delta \eta$)

Assuming

$$\langle n_B \rangle_{n_R} = c_0 + c_1 n_R$$

we can derive a general relation between b_{BF}^{\star} and b_{BF} and b_{BR} (measured without fixing n_R)

The relation is

$$b_{BF}^{\star} = \frac{b_{BF} - b_{BR}^2}{1 - b_{BR}^2}$$

where b_{BF} and b_{BR} are measured without fixing n_R in R

Assuming that two-particle correlation function depends only on $|\eta_1 - \eta_2|$ and is not increasing as a function of $|\eta_1 - \eta_2|$ we obtain

$$b_{BR} > b_{BF}$$

and

$$b_{BF}^{\star} = \frac{b_{BF} - b_{BR}^2}{1 - b_{BR}^2} < \frac{b_{BR} - b_{BR}^2}{1 - b_{BR}^2} = \frac{b_{BR}}{1 + b_{BR}} < \frac{1}{2}$$

To obtain $b_{BF}^{\star} > \frac{1}{2}$ we have to assume that

$$b_{BR} < b_{BF}$$

STAR provided enough information to calculate b_{BF} and b_{BR} for the most central collisions

$$b_{BR} \approx 0.58, \qquad b_{BF} \approx 0.72$$

Options

Maybe in central AuAu collisions two-particle correlation function is increasing as a function of $|\eta_1 - \eta_2|$?

We know it is not the case!

It seems we have to assume that in central AuAu collisions 2-particle correlation function strongly decreases as a function of $|\eta_1 + \eta_2|$

Indeed,...

$$|\eta_1 + \eta_2| \approx 0$$

$$|\eta_1 + \eta_2| \approx 1$$

... if this is the case we can have

$$b_{BR} < b_{BF}$$

Conclusions

- We argued that in the most central AuAu collisions the 2-particle correlation function strongly decreases as a function of $|\eta_1 + \eta_2|$
- We probably see a source of symmetric correlations which strongly correlates bins located symmetrically around $\eta=0$ and is less effective for asymmetric bins
- In pp collisions no "strange" physics is observed